
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 7, Issue 4, April 2018

Copyright to IJARCCE DOI 10.17148/IJARCCE.2018.741 1

An Extension of the Dot Product:

The Idot Product

Ying Liu
1
, Shaohui Wang

2

Department of Engineering Technology, Savannah State University, Savannah, Georgia 31404

Department of Mathematics, Savannah State University, Savannah, Georgia 31404

Abstract: Dot product is an advanced subject of applications in many areas. It is known that the dot product is

inadequate for many applications. In this paper, we introduce a new type of dot product, Image Dot Product or Idot

Product. In particular, an L-factor for the Idot product is introduced. We also investigate both the binary Idot product,

and the Idot product. In addition, there are many open questions to be answered about the Idot product.

Keywords: Dot product, scaler product, image, image recognition, artificial intelligence.

1. INTRODUCTION

The dot product or scale product has unlimited applications in many areas. In the age of AI [3], however, for many

computer applications, the dot product is inadequate. It will be necessary to extend the dot product.

The classification problem [3] is to classify an unknown pattern into a set of classes. Given the following set of sample

vectors, S = {s1, s2, s3}, where each sample is a 15-dimensition binary vector:

011 111 111

001 001 001

s1 = 001 s2= 111 s3= 111

001 100 001

001 111 111

They look like 3 images of 3-pixel by 5-pixel; furthermore, these are images of characters 1, 2, and 3. These three

vectors form a sample vector set.

Assuming another unknown vector, u1, is given:

001

001

u1= 011

001

101.

The question is to classify the unknown vector, u1, from the sample vector set, S = {s1, s2, s3}. In this particular

example, the correct classification is that the unknown vector, u1, belongs to class, s1.

There are three types of pixels: object, background, and noise. We will examine each pixel of a vector and each pixel is

classified into {object, background, noise}. The noise pixel will appear randomly in the unknown patterns. Let us look

at the sample vector, s1:

011

001

001

001

001.

Note, this vector has 6 “object” pixels represented by “1”, 9 “background” pixels represented by “0”, and 0 “noise”

pixels. Let us look at the unknown vector, u1:

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 7, Issue 4, April 2018

Copyright to IJARCCE DOI 10.17148/IJARCCE.2018.741 2

001

001

011

001

101

Note, this vector has 5 “object” pixels, 8 “background” pixels, and 2 “noise” pixels; if we remove the noise pixels, this

vector will look like this:

001

001

001

001

001

In pixel matching, not all pixel pairs have an equal weight. It is the collection of the object pixels that determines the

classification of the unknown vector. The background pixels play much smaller roles in determining the classification

of an unknown vector. As a result, the object matching should have the highest weight: if an object pixel matches a

corresponding object pixel, then this match should have the highest weight. The background match should have lower

weight: if a background pixel matches a corresponding background pixel, then it should have a lower weight than the

object pixel match. The mismatch should have the lowest weight: if an object pixel matches a background pixel, then it

should produce the lowest contribution.

Let us classify the unknown vector, u1, from the sample vectors, {s1, s2, s3}. We can have several classification

algorithms, including classification by shortest distance (K-Means Clustering) [2,4,5,6] and classification by largest

projection [1]. We will briefly look at both approaches to address several shortcoming of the dot product.

Let us first look at the classification by minimum distance. This is a simple case of K-Means Clustering [2,4,5,6],

where each sample vector is a cluster. The distance is the norm of (u1 – s1), (u1 – s2), (u1 – s3). The minimum distance

will determine the classification of the given unknown vector. Let us look at (u1 – s1):

011 001 0 1 0

001 001 0 0 0

001 - 011 = 0 -1 0

001 001 0 0 0

001 101 -1 0 0

When an object pixel matches an object pixel, it contributes 1-1 = 0; and when a background pixel matches a

background pixel, it contributes 0 – 0 = 0. The dot product cannot discriminate the difference. It gives too much weight

to the background match. This overestimates the contribution of the background.

Let us now look at the classification by maximum projection [6]: (u1 ⋅ s1), (u1 ⋅ s2), (u1 ⋅ s3). The maximum projections

will determine the classification of the given unknown vector. Let us look at (u1 ⋅ s1):

011 001 0+0+1+

001 001 0+0+1+

001 ⋅ 011 = 0+0+1+ = 5

001 001 0+0+1+

001 101 0+0+1

When an object pixel matches an object pixel, it will contribute 1 ⋅ 1 = 1; and when a background pixel matches a

background pixel, it contributes 0 ⋅ 0 = 0. When an object pixel matches a background pixel, it will contribute 1 ⋅ 0 = 0;

and when a background pixel matches an object pixel, it contributes 0 ⋅ 1 = 0.

Note, both the mismatch (1 ⋅ 0 = 0 ⋅ 1 = 0) and the correct background match (0 ⋅ 0 = 0) have the same weight. The dot

product cannot take any contribution from the correct background matching. Although the correct background

matching (0 ⋅ 0 = 0) is not as important as correct object matching (1 ⋅ 1 = 1), the dot product thinks it has the same

weight as a mismatch (1 ⋅ 0 = 0 ⋅ 1 = 0). This underestimates the contribution of the background.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 7, Issue 4, April 2018

Copyright to IJARCCE DOI 10.17148/IJARCCE.2018.741 3

In both cases, the dot products are inadequate to complete the vector classification computation; an extension of the dot

product will be necessary, which can distinguish three different types of pixel matches:

 Object pixel vs object pixel

 Background pixel vs background pixel

 All other matches.

In this paper, we make an attempt to extend the dot product by introducing a new type of dot product, Image Dot

Product or Idot product. In particular, an L-factor is introduced. We first introduce the binary Idot product; then we

introduce the Idot product. There are many open questions to be answered about the Idot product.

2. BACKGROUND

The definition of the dot product is well known. Below, we merely introduce the notations used for the rest of this

paper.

If e1, ..., en are the standard basis vectors in Rn, then we can write:

a = [a1 , … , an] = ∑ ai ei,

b = [b1 , … , bn] = ∑ bi ei.

Without loss of generality, assuming vectors, ei, are an orthonormal basis,

ei ⋅ ej = δ i j .

Now

a ⋅ b = ∑ ai bi .

In particular, (1) if vector b is a unit vector, the dot product gives the projection of a vector, a, along the direction of

vector, b; (2) The distance between a and b is the norm of (a – b).

3. BINARY IDOT PRODUCT

We will now introduce the binary Idot product. If e1, ..., en are the standard basis vectors in Rn, then we can write:

a = [a1 , … , an] = ∑ ai ei

b = [b1 , … , bn] = ∑ bi ei

Without loss of generality, assuming vectors, ei, are an orthonormal basis,

ei ⋅ ej = δ i j .

Now, the Binary Idot product is defined as:

a ⋅ b = ∑ l i (i, ai , bi)

Where l i (i, ai , bi) is called a L-factor, which is a function of the index i, ai and bi. In this way, it can discriminate an

object pixel from a background pixel. For a binary variable, x = 0, or 1, rewrite the variable as:

 x = x (δx1+ δx0) .

An object pixel, x, is identified by δ x1; and a background pixel is identified by δ x0. We define the L-factor as follows:

l i (i, x, y) = w11 (i) δ x1 δ y1 + w10 (i) δ x1 δ y0 + w01 (i) δ x0 δ y1 + w00 (i)δ x0 δ y0

If w11 (i), w10 (i) , …, depends on i, we call them local weights. If they are independent of i, we call them global

weights. For the rest of this paper, for simplicity, we will deal with global weights only:

l i (x, y) = w11 δ x1 δ y1 + w10 δ x1 δ y0 + w01 δ x0 δ y1 + w00 δ x0 δ y0

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 7, Issue 4, April 2018

Copyright to IJARCCE DOI 10.17148/IJARCCE.2018.741 4

This is an extension of the standard dot product as follows; rewrite the product of two variables, x and y, as:

 xy = (xδx1+ xδx0)(yδy1+yδy0)

 = x (δx0 δx1) (
1 0
0 1

) (
δy0
δy1

)y

This product does not discriminate the background and object. Now, we can extent this product and define the L-

matrix:

xy = (δx0 δx1) (
𝑤11 𝑤12
𝑤21 𝑤22

) (
δy0
δy1

).

Here δ x1 δ y1 specifies the object pixel matches and w11(i) is its weight; δ x0 δ y0 specifies the background pixel

matches and w00 (i) is its weight; and δ x1 δ y0 , δ x0 δ y1 specifies mismatches.

Example. Define the L-factor:

 l i (x, y) = 0.9 δ x1 δ y1 + 0.1 δ x0 δ y0 ,

while the missing weight means that they are 0. The Idot product is:

 (1, 0, 1, 0) ⋅ (1, 0, 0, 1) = 0.9 + 0.1 = 1.

Example. Define the L-factor:

 l i (x, y) = 1.0 δ x1 δ y1 - 0.1 δ x1 δ y0 - 0.1 δ x0 δ y1 + 0.2 δ x0 δ y0

then

 (1, 0, 1, 0) ⋅ (1, 0, 0, 1) = 1 + 0.2 – 0.1 – 0.1 = 1.

4. IDOT PRODUCT

In the last section, we introduced the binary Idot product. The advantage of binary numbers is that it classifies a pixel

into two types: object (1) and background (0).

To extend the Idot product beyond binary vectors, a threshold, T, will be needed to separate a pixel into two types:

object (pixel >= T) and background (pixel < T).

Define x as a step function of a pixel value:

x (pixel, T) =
 1, 𝑖𝑓 (pixel >= 𝑇)

0, 𝑖𝑓 (pixel < 𝑇)

then we can extend the definition below:

If e1, ..., en are the standard basis vectors in Rn, then we can write:

a = [a1 , … , an] = ∑ ai ei

b = [b1 , … , bn] = ∑ bi ei

Without loss of generality, assuming vectors, ei, are an orthonormal basis,

ei ⋅ ej = δ i j .

Now the Idot product is defined as:

a ⋅ b = ∑ ai bi l i (ai , bi , T)

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 7, Issue 4, April 2018

Copyright to IJARCCE DOI 10.17148/IJARCCE.2018.741 5

Where the L-factor is:

l i (ai , bi , T) = w11 δ x1 δ y1 + w10 δ x1 δ y0 + w01 δ x0 δ y1 + w00 δ x0 δ y0

where

x =
 1, 𝑖𝑓 (ai >= 𝑇)
0, 𝑖𝑓 (ai < 𝑇)

y =
 1, 𝑖𝑓 (bi >= 𝑇)
0, 𝑖𝑓 (bi < 𝑇)

There are numerous computer applications using the Idot product. The results are significantly better than the dot

product. However, this topic will be beyond the scope of this paper.

5. YET OTHER EXTENSIONS

The above Idot definitions assumed that vectors are of the same dimension. Often the sample vector is smaller than the

unknown vector, so this Idot product has to be extended. Continuing from the earlier example, an unknown vector

could be:

0010

0010

 B = 0110

0010

1010

0000

To compute the Idot product, a ⋅ B, assume B has a set of sub-vectors, B = { bk , k = 0, 1, 2, …}, that have the same

dimension as vector, a.

The Idot product can be defined as:

 a ⋅ B = max { a ⋅ b k }, bk ϵ B.

This is one of many options and this definition emphasizes the maximum sub-vectors matches. There are numerous

other alternatives to the above definitions, such as replacing the max in the above definition by sum, average,

minimum, counting, … .

6. OPEN QUESTION

A natural question is: given a set of sample binary vectors and a set of classified binary vectors where the

classifications are known, what is an algorithm to determine {w11, w10, w01 , w00}? One can ask a similar question for a

non-binary case, how to determine {w11, w10, w01 , w00, T}? One can ask a similar question when the sample vector

dimension is smaller than the unknown vectors. One can ask a similar question when the weights are local instead of

global.

7. CONCLUSION

In this paper, we have illustrated why dot product is inadequate for many applications. We have introduced a new type

of dot product, Image Dot Product or Idot product. In particular, an L-factor has been introduced. We have introduced

both the binary Idot product and the Idot product. There are many open questions to be answered about weight

inference for the Idot product.

ACKNOWNLEDGEMENTS

 I would like to thank Gina Porter for proof reading of this paper.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 7, Issue 4, April 2018

Copyright to IJARCCE DOI 10.17148/IJARCCE.2018.741 6

REFERENCES

[1] S. Amari, K. Kurata, and H Nagaoka, "Information geometry of Boltzmann machine," IEEE Trans., Neural Network, Vol. 3, No. 2, pp. 260 – 271,

1992.
[2] E.W. Forgy, "Cluster analysis of multivariate data: efficiency versus interpretability of classifications". Biometrics 21, 768–769, 1965.

[3] G. Hinton, G. E., Osindero, S. and Teh, Y., “A fast learning algorithm for deep belief nets,” Neural Computation 18, pp 1527-1554, 2006.

[4] S. P. Lloyd, "Least squares quantization in PCM" (PDF). IEEE Transactions on Information Theory 28 (2): 129–137, 1957, 1982.

[5] J. B. MacQueen, Some Methods for classification and Analysis of Multivariate Observations. Proceedings of 5th Berkeley Symposium on

Mathematical Statistics and Probability 1. University of California Press. pp. 281–297, 1967.

[6] H. Steinhaus, "Sur la division des corps matériels en parties". Bull. Acad. Polon. Sci. (in French) 4 (12): 801–804, 1957.

